翻訳と辞書
Words near each other
・ Willmar Air Force Station
・ Willmar and Sioux Falls Railway
・ Willmar Ministry
・ Willmar Municipal Airport
・ Willmar Stingers
・ Willmar Township, Kandiyohi County, Minnesota
・ Willmar, Minnesota
・ Willmars
・ Willmenrod
・ Willmer "Little Ax" Broadnax
・ Willmer Fowler
・ Willmering
・ Willmering Tourist Cabins Historic District
・ Willmoore Kendall
・ Willmore conjecture
Willmore energy
・ Willmore Wilderness Park
・ Willmot, New South Wales
・ Willmott
・ Willmott Dixon
・ Willmott v Barber
・ Willms Buhse
・ Willner
・ Willo
・ Willo Davis Roberts
・ Willo Flood
・ Willo McDonagh
・ Willo the Wisp
・ Willo, Arizona
・ Willobie His Avisa


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Willmore energy : ウィキペディア英語版
Willmore energy
In differential geometry, the Willmore energy is a quantitative measure of how much a given surface deviates from a round sphere. Mathematically, the Willmore energy of a smooth closed surface embedded in three-dimensional Euclidean space is defined to be the integral of the square of the mean curvature minus the Gaussian curvature. It is named after the English geometer Thomas Willmore.
==Definition==
Expressed symbolically, the Willmore energy of ''S'' is:
: \mathcal = \int_S H^2 \, dA - \int_S K \, dA
where H is the mean curvature, K is the Gaussian curvature, and ''dA'' is the area form of ''S''. For a closed surface, by the Gauss–Bonnet theorem, the integral of the Gaussian curvature may be computed in terms of the Euler characteristic \chi(S) of the surface, so
: \int_S K \, dA = 2 \pi \chi(S),
which is a topological invariant and thus independent of the particular embedding in \mathbb^3 that was chosen. Thus the Willmore energy can be expressed as
: \mathcal = \int_S H^2 \, dA - 2 \pi \chi(S)
An alternative, but equivalent, formula is
: \mathcal = \int_S (k_1 - k_2)^2 \, dA
where k_1 and k_2 are the principal curvatures of the surface.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Willmore energy」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.